YA

In me the tiger sniffes the rose.

  • 主页
  • 世界之内
  • 世界之外
  • 叶隙随笔
所有文章 友链 关于我

YA

In me the tiger sniffes the rose.

  • 主页
  • 世界之内
  • 世界之外
  • 叶隙随笔

A Review of Brian - Inspired Computer Vision

阅读数:22353次 2018-02-12
字数统计: 3.2k字   |   阅读时长≈ 19分

Abstract

Vision is the most important way for us to getexternal information. Understanding the information processing mechanism of thebiological visual system can help us to better understand how the brain works.

Humanvisual system has perfect capability for visual information processing and itsintelligence outperforms the best current computer vision system. Therefore, buildingbrain-inspired methods to improve computer Vision applications has attracted seriousconcern.

Althoughthe research of computer vision has made a great progress in recent years,there are still a wide gap between computer visual system and human visionexcept some specific visual assignment, such as target recognition in specific imagelibrary. [1]

Thisthesis will address a series of research status related to the brain-computervision in the world.

Keywords:visual perception brain-computer vision

Introduction

Visionis the most important way for us to get external information. Understanding theinformation processing mechanism of the biological visual system can help us tobetter understand how the brain works.

On the other hand,a large number of information acquisition and processing in the field ofartificial intelligence also depends on the visual signals like video, image and so on. The ultimate goal ofcomputer vision is to establish a visual information processing system asintelligent as biological visual system which can help artificial intelligencesystem to complete the visual signal acquisition and analysis. With thedevelopment of Internet technology, the amount of data which is based on visionis also growing sharply. It includes the photographs taken by mobile phone, thedifferent kinds of video acquired by surveillance equipment, etc. Coding andstoring these massive data effectively as well as mining useful information amajor challenge that computer science faces now. It is hoped that the computercan efficiently feel and understand the world, and be able to handle thecomplex visual information like human beings which sets higherrequirements to all kinds of algorithms of visualinformation processing. Constructing a visual-perception computer is anextremely difficult process which needs to build three-dimensional physicalreal scenes from the two-dimensional image. People, however, can easily finishthese tasks. Although the research of computer vision hasmade a great progress in recent years, there are still a wide gap betweencomputer visual system and human vision except some specific visual assignment,such as target recognition in specific image library.[1]

Currently,the research of vision mainly includes two fields: one is the visualneuroscience for studying the mechanism of information processing of visualsystem; another is computer vision that aims at developing visual informationprocessing method. Neuroscientists concentrates more on the study of neural mechanismof visual information process. About 70% of the information that the brainreceives comes from the visual system, while nearly 40% of the neurons in thebrain are involved in the processing of visual information. At the same time,the biological visual information processing is not carried out in isolation,it is closely related to the advanced cognitive process, such as learning andmemory. Therefore, vision is an important access point and a part of brain science research. In recentdecades, neuroscientists have studied systematically the vision from differentangles and levels, such as neuron level, neural network level, cognition,behavior and so on, and has accumulated rich research data. In order toeffectively integrate experimental data from different levels, computationalneuroscientist, by means of computational modeling from the basic function ofeach level, explore the calculation mode of visual information processing

Visualperception refers to the process of perceiving and understanding the scene byprocessing the information from the external environment by the visual system.The vision system of intelligent beings is a very complex and efficientinformation processing system. It can achieve a series assignments fast andaccurately like image acquisition, detection of objects in images, andperception of distance, relationship and movement of objects.

Human visual systemhas perfect capability for visual information processing and its intelligenceoutperforms the best current computer vision system. Therefore, buildingbrain-inspired methods to improve computer Vision applications has attractedserious concern.

This thesis will addressa series of research status related to the brain-computer vision in the world.

The status quo of brain-inspired computer vision

Thehuman brain is the most efficient information processing system that we haveknown in the world, but we know little about the brain’s information processingmechanism. At present, the scientific research on the brain is the forefront ofnatural science and is also one of the biggest challenges of human itself.Therefore, exploring the mechanism of the brain will make the human moreprofoundly know itself. At the same time, simulating the mechanism of brain anddeveloping intelligent information processing system will boost not only thedevelopment of information industry but a new technological revolution inrecent years. Europe and the United States have put forward the strategic brainresearch program, its key content includes simulating computing pattern of thebrain and developing brain-technique. In the recent years, Chinese brain projectis also put forward. Brian-Inspired computing has become a hot research topicin the field of artificial intelligence.

Atpresent, the efficiency of intelligent information processing in biologicalvisual system (especially the visual system of the higher animals) is farsuperior to any computer vision system existing. As a result, the researchersbegan to consider introducing mechanism of biological visual informationprocessing to develop new computer vision algorithm. In this paper, Brain-Inspired Computer Vision means developing homologouscomputer algorithms to perform relevant image processing or visual tasks likeimage enhancement image segmentation target detection and so on by learning thebiological visual information processing mechanism. The inspiration frombiological vision often provides a simple and efficient solution for manycomputer vision problems. Currently, the experimental study on the mechanism offront-end vision has achieved rich results and scientists also has a thoroughunderstanding about the information processing mechanism. However, themechanism of advanced visual information processing still remains a mystery.Therefore, the research of brain-inspired computer vision started from theprimary visual task and the front-end visual system.

In1970s, Marr put forward the theory of visual computing [4] based on theachievements of research for vision mechanism in the field of psychophysics,neurophysiology and clinical neurology. Marr systematically studied the problemof visual information processing from two aspects: visual representation andvisual processing. And he described the process of visual informationprocessing from three levels: computing theory, computing algorithm andhardware implementation. Marr believed that the human visual system combinesthe various visual representations of the image organically to form theperception of the target and the understanding of the scene. The visualcomputing theory holds that the three stages of vison’s formation include theestablishment of the primal sketch, the establishment of the 2.5-dimensionalsketch and the formation of the three-dimensional target characterization.Although the theory is not perfect (only established theoretically whichignores the work of feedback mechanism), but was established for the first timefrom the visual image information derived from the frame structure of theoutside world, which greatly promoted the development of computer visionresearch

Atypical example of brain-inspired computer vision is Retinex theory [5, 6], atheory that put forward by Land who simulated the retina and visual cortexmechanism in 1960s. The key idea is that the ability people perceive the colorand brightness are not only absolutely depend on the light form the position theystand, but also the color and brightness around them. Based on Land’s Retinextheory, Jobson developed Single-scale Retinex algorithm [7] and Multi-scaleRetinex algorithm [8] successively, and those algorithms have been successfullyapplied to image processing tasks such as image intensification and colorconstancy. In addition, the idea about realizing the adaption in bright or darkenvironment by using cone cells and rod cells is also widely used in imageintensification and high dynamic range image processing [9 – 11].

Besides,in primary visual processing, biological visual receptive field model has beenwidely used in various image processing tasks. For example, the receptive fieldmodel based on the mechanism of the retina and the LGN neurons can be used forcolor correction, enhancing visibility of hazy images [12] [13] and othervisual tasks. And the computing model based on the properties of primary visualcortex receptive field has been successfully applied to image texture analysis aswell as contour detection [14] [15]. Recently, Wei and other scientists establishedretinal neural circuit model. Such model is used to describe the image feature[16, 17]. It was found that the image characteristics encoded by this model canimprove the performance of senior visual task (such as image segmentation,target recognition, etc.). By simulating the mechanism of color opponent-process receptive field, Zhang withhis team established the color character description method which alsosignificantly improves the performance of contour detection and targetrecognition system [18]. In addition, based on the rattlesnake’s receptivefield mechanism of optical information and of the infrared signal, the receptivefield model established by Waxman’s team can be used in optical image andinfrared image in low light environment [19]

Anothersuccessful example is selective attention model. Visual selective attention is animportant means to implement the coding of visual information effectively [2][20]. Based on the feature integration theory put forward by Treisman, Itti’svisual selective attention model has been widely used in the field of imageprocessing [24] [21]. For instance, in JPEG2000 image compression method, usingselective attention model can compressed image and at the same time as much aspossible to retain the important area of image [21]. Selective attention model promotesthe development of advanced computer vision algorithms, such as targetrecognition [25]. Recent research applied saliency model to analysing thebehavior of the autistics [26], which helps people to understand the mechanismof the autistic disorder and provide supplementary treatment of this disease. Saliencycomputing model was also used to analyze the driver’s behavior which hasimportant reference value for the design of self-driving systems [27]. At the same time, visual perception process based on the Gestaltprinciples (Gestalt) or topological perception theory provides a new insightinto the development ofintelligent target perception algorithm [3].

In termsof advanced vision tasks, Poggio and other people put forward HMAX models basedon hierarchical information processing model of vision system which achievegood performance in target recognition tasks of complex scenes [28, 29]. The deeplearning algorithm which is successfully applied in the field of computervision, to some extent, is also using the hierarchical processing method ofvisual system [30 - 34]. Among them, the weights sharing mechanism of convolutionalneural network is also similar to visual receptive field’s. Convolutioncomputing and pool operation in the convolution neural network are directlyinspired by the way of information processing in the visual system of simplecells and complex cell. What is more, the overall structure of convolutionalneural network is similar to the visual processing structure from visualpathway in the cortex such as LGN-V1-V2-V4-IT [34].

At thesame time, the related research is also of great significance to understandingthe computing mode of the brain. With the development of the research onmechanism of the brain, researchers began to consider using a computer to simulatethe brain function and behavior [35]. Recently, Eliasmith and other people putsforward a brain computing model consists of 2.5 million simulated neurons [36].This model can implement multiple vision and learning tasks. The simulation tothe whole brain based on the great progress of early visual model study. Thosecomputing models have irreplaceable scientific value in explaining the braininformation processing mechanism. At the same time, on account of theachievements in the field of cognitive science, developing new computationallearning theories is an important part of artificial intelligence. This paperfocuses on the vision problems in brain-inspired computing, and other parts ofit is beyond the research scope of this paper for which I will introduce littlein this paper.

Summary

Over thepast few decades, especially in the past 10 years, the neuroscience hasobtained the very rapid development. Now we have accumulated a wealth ofknowledge for the working principle of the brain, this provides an importantbiological basis for the development of brain-inspired computer vision. But as forthe mechanism of how neurons with relatively simple function are organizedthrough the network, there are still many problems remain to be resolved.

Thebrain is a complex network consists of nearly billions of neurons. The materialbasis of the implement of feeling, working and other brain functions is orderlytransmission and processingof information in this hugenetwork.

In thefield of algorithms, many people worry about how to create algorithms forbrain-inspired computing when we know little about the working principles of brain.However, the multi-layer and step processing structure in the brain, especiallythe visual pathway, is the basic knowledge that has been acquired inneuroscience. This suggests that we do not have to fully understand theprinciples of the brain to study the algorithms of the brain. On the contrary,what is really enlightening is probably a relatively basic principle. Some ofthese principles may have been known by brain scientists, while others may yetbe discovered. Every basic principle and its successful application inartificial information processing system may bring about progress in brain computingresearch. It is very important that this process of discovering andtransforming can not only promote the development of theartificial intelligence, but also be synchronized to deepen our understandingof how can information be so effective in dealing with the issue about why thebrain [37], thus forming a virtuous circle of a brain science and artificialintelligence technology to promote each other.

Thebrain-inspired computer vision is the highly cross and fusion of life sciences,especially brain science and information technology. The technology includesunderstanding the brain’s visual information processing principle, and developa new algorithm on this basis, and apply it to a new generation of artificialintelligence, human-computer interaction and other fields. Brain-inspiredcomputer vision technology is expected to enable artificial vision informationprocessing system to produce a visual information processing system that is similarto human brain at very low energy consumption. Many people believe that thesubstantial progress in this direction will actually open the prelude to theintelligent revolution and bring a profound change to the social production andlife [38].

References

[1] K. He, X. Zhang, S.Ren, et al. Delving deep into rectifiers: Surpassing human-level performance onImage Net classification[C]. IEEE International Conference on Computer Vision,Santiago, Chile,2015,1026–1034

[2] J. K. Tsotsos, S. M. Culhane, W. Y. K. Wai, et al. Modelingvisual attention via selective tuning[J]. Artificial Intelligence, 1995,78(1):507–545

[3] L. Chen. The topological approach to perceptualorganization[J]. Visual Cognition, 2005,12(4):553–637

[4] D. Marr. 视觉计算理论[M]. 科学出版社, 1988

[5] E. H. Land, J. J. Mc Cann. Lightness and retinex theory[J].Journal of the Optical Society of America, 1971, 61(1):1–11

[6] E. H. Land. An alternative technique for the computation ofthe designator in the retinex theory of color vision[J]. Proceedings of theNational Academy of Sciences, 1986, 83(10):3078–3080

[7] R. Zia. Properties of a center/surround Retinex: part 1.signal processing design[J]. NASA Langley Technical Report Server, 1995

[8] D. J. Jobson, Z.-u. Rahman, G. A. Woodell. A multiscaleretinex for bridging the gap between color images and the human observation ofscenes[J]. IEEE Transactions on Image Processing,1997, 6(7):965–976

[9] K. Devlin. A review of tone reproduction techniques[J].Computer Science, University of Bristol, Technical Report CSTR-02-005, 2002

[10] S. N. Pattanaik, J. Tumblin, H. Yee, et al. Time-dependentvisual adaptation for fast realistic image display[C]. IEEE Conference onComputer Graphics and Interactive Techniques, New Orleans, USA, 2000, 47–54

[11] P. Vangorp, K. Myszkowski, E. W. Graf, et al. A model oflocal adaptation[J]. ACM Transactions on Graphics, 2015, 34(6):166:1–13

[12] X.-S. Zhang, S.-B. Gao, R.-X. Li, et al. A Retinal MechanismInspired Color Constancy Model[J]. IEEE Transactions on Image Processing, 2016,25(3):1219–1232

[13] X.-S. Zhang, S.-B. Gao, C.-Y. Li, et al. A Retina InspiredModel for Enhancing Visibility of Hazy Images[J]. Frontiers in ComputationalNeuroscience, 2015, 9:151,1–13

[14] N. Petkov, M. A. Westenberg. Suppression of contourperception by band-limited noise and its relation to nonclassical receptivefield inhibition[J]. Biological Cybernetics, 2003, 88(3):236–246

[15] J. Malik, P. Perona. Preattentive texture discrimination withearly vision mechanisms[J]. Journal of the Optical Society of America A:Optics, Vision and Image Science, 1990, 7(5):923–932

[16] D. Weng, Y. Wang, M. Gong, et al. DERF: Distinctive EfficientRobust Features From the Biological Modeling of the P Ganglion Cells[J]. IEEETransactions on Image Processing, 2015,24(8):2287–2302

[17] H. Wei, Q. Zuo. A biologically inspired neurocomputingcircuit for image representation[J]. Neurocomputing, 2015, 164:96–111

[18] J. Zhang, Y. Barhomi, T. Serre. A new biologically inspiredcolor image descriptor[C]. European Conference on Computer Vision, Florence,Italy, 2012, 312–324

[19] A. M. Waxman, A. N. Gove, D. A. Fay, et al. Color nightvision: opponent processing in the fusion of visible and IR imagery[J]. NeuralNetworks, 1997, 10(1):1–6

[20] A. M. Treisman, G. Gelade. A feature-integration theory ofattention[J]. Cognitive Psychology,1980, 12(1):97–136

[21] C. Christopoulos, A. Skodras, T. Ebrahimi. The JPEG2000 stillimage coding system: an

overview[J]. IEEE Transactions on Consumer Electronics, 2000,46(4):1103–1127

[22] L. Itti, C. Koch, E. Niebur. A model of saliency-based visualattention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 1998(11):1254–1259

[23] A. Borji, L. Itti. State-of-the-art in visual attentionmodeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013, 35(1):185–207

[24] A. Borji, M.-M. Cheng, H. Jiang, et al. Salient objectdetection: A survey[J]. ar Xiv preprint ar Xiv:1411.5878, 2014

[25] U. Rutishauser, D. Walther, C. Koch, et al. Is bottom-upattention useful for object recogni-tion?[C]. IEEE Conference on ComputerVision and Pattern Recognition, Washington, USA,2004, 37–44

[26] S. Wang, M. Jiang, X. M. Duchesne, et al. Atypical VisualSaliency in Autism Spectrum Disorder

Quantified through Model-Based Eye Tracking[J]. Neuron, 2015,88(3):604–616

[27] T. Deng, A. Chen, M. Gao, et al. Top-down based saliencymodel in traffic driving environment[C]. IEEE International Conference onIntelligent Transportation Systems, Qingdao, China,2014, 75–80

[28] M. Riesenhuber, T. Poggio. Hierarchical models of objectrecognition in cortex[J]. Nature Neuroscience, 1999, 2(11):1019–1025

[29] T. Serre, L. Wolf, S. Bileschi, et al. Robust objectrecognition with cortex-like mechanisms[J].IEEE Transactions on PatternAnalysis and Machine Intelligence, 2007, 29(3):411–426

[30] G. E. Hinton. What kind of graphical model is the brain?[C].International Joint Conference on Artificial Intelligence, Edinburgh, UK,1765–1775

[31] G. E. Hinton, S. Osindero, Y.-W. Teh. A fast learningalgorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527–1554

[32] G. E. Hinton, R. R. Salakhutdinov. Reducing thedimensionality of data with neural networks[J]. Science, 2006,313(5786):504–507

[33] Y. Bengio, A. Courville, P. Vincent. Representation learning:A review and new perspectives[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2013, 35(8):1798–1828

[34] Y. Le Cun, Y. Bengio, G. Hinton. Deep learning[J]. Nature,2015, 521(7553):436–444

[35] C. K. Machens, et al. Building the human brain[J]. Science,2012, 338(6111):1156–1157

[36] C. Eliasmith, T. C. Stewart, X. Choo, et al. A large-scalemodel of the functioning brain[J]. Science, 2012, 338(6111):1202–1205

[37]Yamins D L K, DiCarlo J J. Using goal-driven deep learning models to understandsensory cortex[J]. Nature Neuroscience, 2016, 19: 356-365.

[38]Bostrom N. Superintelligence[M]. New York: Oxford University Press, 2014.

赏

谢谢你请我吃糖果

支付宝
微信
  • 本文作者: YA
  • 本文链接: http://www.yuuuuang.com/2018/02/12/A Review of Brian - Inspired Computer Vision /
  • 版权声明: 本博客所有文章除特别声明外,均采用 MIT 许可协议。转载请注明出处!
  • 世界之内

扫一扫,分享到微信

《精进》chapter-2读后总结
最近有个女生,说对我很失望
  1. 1. Abstract
  2. 2. Introduction
  3. 3. The status quo of brain-inspired computer vision
  4. 4. Summary
  5. 5. References
© 2018-2025 YA
GitHub:hexo-theme-yilia-plus by Litten
本站总访问量25938次 | 本站访客数21064人
  • 所有文章
  • 友链
  • 关于我

tag:

  • 随笔
  • 年终总结
  • 世界之内
  • 世界之外
  • 叶隙集
  • 机器学习
  • 叶隙随笔
  • 图像处理
  • 数据挖掘

    缺失模块。
    1、请确保node版本大于6.2
    2、在博客根目录(注意不是yilia-plus根目录)执行以下命令:
    npm i hexo-generator-json-content --save

    3、在根目录_config.yml里添加配置:

      jsonContent:
        meta: false
        pages: false
        posts:
          title: true
          date: true
          path: true
          text: false
          raw: false
          content: false
          slug: false
          updated: false
          comments: false
          link: false
          permalink: false
          excerpt: false
          categories: false
          tags: true
    

  • 2024年终总结

    2025-04-08

    #随笔#年终总结

  • 【叶隙集】41 盘旋的白文鸟

    2025-01-12

    #随笔#叶隙集

  • 大语言模型正在伤害人机交互领域的研究

    2025-01-05

    #随笔#世界之内

  • 【叶隙集】40 台湾旅行

    2024-12-22

    #随笔#叶隙集

  • 【叶隙集】39 搬家了

    2024-09-05

    #随笔#叶隙集

  • 2023年终总结

    2024-06-27

    #随笔#年终总结

  • 【叶隙集】38 参加学术会议

    2024-05-22

    #随笔#叶隙集

  • Notes of 3D Gaussian Splatting

    2024-03-19

    #世界之内

  • 【叶隙集】37 音乐会和朋友

    2023-12-04

    #随笔#叶隙集

  • 【叶隙集】36 QE和音乐会

    2023-11-02

    #随笔#叶隙集

  • 【叶隙集】35 新室友和更积极的生活

    2023-09-11

    #随笔#叶隙随笔

  • 读书笔记|《规训与惩罚》

    2023-08-27

    #随笔#世界之外

  • 【叶隙集】34 无法参加学术会议

    2023-06-28

    #随笔#叶隙集

  • 【叶隙集】33 回国后与朋友和家人们的聚会

    2023-06-11

    #随笔#叶隙集

  • 视频压缩技术概述

    2023-04-28

    #世界之内

  • 2022年终总结

    2023-03-31

    #随笔#年终总结

  • 【叶隙集】32 平和的心态

    2022-12-27

    #随笔#叶隙集

  • 【叶隙集】31 双相情绪障碍症

    2022-12-17

    #随笔#叶隙集

  • 【学习笔记】CS5229 Advanced Computer Network

    2022-12-17

    #世界之内

  • 【叶隙集】30 下半学期太忙了!

    2022-11-25

    #随笔#叶隙集

  • 【叶隙集】29 当助教的半个学期

    2022-10-07

    #随笔#叶隙集

  • 【叶隙集】28 忙碌的第一个月

    2022-08-31

    #随笔#叶隙集

  • 【叶隙集】27 老师的职责

    2022-07-31

    #随笔#叶隙集

  • 【叶隙集】26 新加坡太难找工作了

    2022-07-23

    #随笔#叶隙集

  • 【叶隙集】25 生产工具、学习生活和阅读笔记

    2022-07-15

    #随笔#叶隙集

  • 【叶隙集】24 学习、科研、旅行和爱与关怀

    2022-06-24

    #随笔

  • 【叶隙集】23 学习与研究

    2022-04-26

    #随笔#叶隙集

  • 【学习笔记】人工智能规划与决策

    2022-04-26

    #世界之内

  • 博士申请的总结

    2022-03-31

    #随笔

  • 【叶隙集】22 新的体验和宗教

    2022-03-07

    #随笔#叶隙集

  • 2021年终总结

    2022-01-08

    #随笔#年终总结

  • 【叶隙集】21 新朋友和学术报告

    2021-10-31

    #随笔#叶隙集

  • 【叶隙集】20 音乐会与教训

    2021-10-19

    #随笔#叶隙集

  • 【叶隙集】19 六周年纪念日

    2021-10-03

    #随笔#叶隙集

  • 【叶隙集】18 疫情与疫苗

    2021-09-24

    #随笔#叶隙集

  • 摘录|联合国2021年气候问题总结报告的摘要

    2021-09-19

    #世界之外

  • 【叶隙集】17 音乐会和读书

    2021-09-08

    #随笔#叶隙集

  • 【叶隙集】16 喜欢上了游泳

    2021-09-01

    #随笔#叶隙集

  • 【叶隙集】15 课前的夜曲

    2021-08-24

    #随笔#叶隙集

  • 【叶隙集】14 平稳的学习生活

    2021-08-16

    #随笔#叶隙集

  • 【叶隙集】13 生活与朋友

    2021-07-15

    #随笔#叶隙集

  • 【叶隙集】12 毕业

    2021-06-30

    #随笔#叶隙集

  • 【叶隙集】11 毕业前的生活

    2021-06-23

    #随笔#叶隙集

  • 读书笔记|《国境以南,太阳以西》读后感

    2021-06-17

    #随笔

  • 【叶隙集】10 青甘环线旅行

    2021-06-13

    #随笔#叶隙集

  • 半监督学习|论文粗读

    2021-06-07

    #机器学习

  • 【叶隙集】9 纯粹地生活

    2021-06-06

    #随笔#叶隙集

  • 【叶隙集】8 生活的界限

    2021-05-30

    #随笔#叶隙集

  • 【叶隙集】7 隔离结束

    2021-05-21

    #随笔#叶隙集

  • 【叶隙集】6 隔离生活

    2021-05-14

    #随笔#叶隙集

  • 【叶隙集】5 新的阶段

    2021-05-08

    #随笔#叶隙集

  • 【叶隙集】4 团队管理

    2021-04-30

    #随笔#叶隙集

  • 【叶隙集】3 过低的自我评价

    2021-04-23

    #随笔#叶隙集

  • 【叶隙集】2 方向与交往

    2021-04-16

    #随笔#叶隙集

  • 【叶隙集】1 原爆点-续

    2021-04-08

    #随笔#叶隙集

  • 随笔|目的与纯粹

    2021-03-28

    #随笔

  • 随笔|白文鸟

    2021-01-20

    #随笔

  • 写在一百以后——2020年终总结

    2021-01-01

    #随笔#年终总结

  • 随笔|选择

    2020-12-25

    #随笔

  • 读书笔记|《人生的意义》总结、摘录

    2020-11-25

    #世界之外

  • 书评|Normal People, Normal Love

    2020-10-07

    #随笔

  • Decision Making|人工智能、机器学习与强化学习的概述与比较

    2020-10-03

    #世界之内

  • 随笔|疫情后的总结

    2020-09-10

    #随笔

  • 学习笔记@PRML|1 Introduction

    2020-07-31

    #世界之内

  • 随笔|面试后的回顾与思考

    2020-07-26

    #随笔

  • 数据挖掘|数据挖掘概论笔记

    2020-06-24

    #世界之内#数据挖掘

  • 续写|美女或野兽

    2020-06-18

    #随笔

  • 随笔|无常

    2020-05-31

    #随笔

  • 现象学|胡塞尔《小观念》笔记

    2020-05-13

    #世界之外

  • 随笔|我的局限性

    2020-05-13

    #随笔

  • 随笔|胡乱的记录

    2020-04-09

    #随笔

  • 随笔|疫情

    2020-02-16

    #随笔

  • 随笔|怅惘地忖度

    2020-01-29

    #随笔

  • 2019年终总结

    2019-12-08

    #随笔#年终总结

  • 机器学习|Flow-based Model学习笔记

    2019-11-06

    #世界之内#机器学习

  • 【Introduction to TensorFlow】03 卷积神经网络与复杂数据集

    2019-10-31

    #世界之内#机器学习

  • 【Introduction to TensorFlow】02 初识机器学习与计算机视觉

    2019-10-29

    #世界之内#机器学习

  • 【Introduction to TensorFlow】01 TF 快速入门

    2019-10-29

    #世界之内#机器学习

  • 【Introduction to TensorFlow】00 课程概览

    2019-10-29

    #世界之内#机器学习

  • 随笔|呓语

    2019-10-27

    #随笔

  • 周记|面纱 久别重逢

    2019-09-21

    #随笔

  • 学习笔记|拟合优化

    2019-09-15

    #世界之内

  • 周记|爱人 体验 芝诺

    2019-09-07

    #随笔

  • 摘录|造成不幸福的原因之六:嫉妒

    2019-09-06

    #世界之外

  • 随笔|虚无 纵欲

    2019-08-22

    #随笔

  • 周记|尘埃落定

    2019-06-29

    #随笔

  • 周记|本能 愉悦 基因

    2019-06-12

    #随笔

  • 周记|空荡荡

    2019-06-02

    #随笔

  • 四月裂帛——读《女儿红》

    2019-05-30

    #随笔#世界之外

  • 机器学习|主成分分析

    2019-05-10

    #世界之内#机器学习

  • 《好运设计》史铁生

    2019-05-09

    #世界之外

  • 机器学习|感知机与支持向量机

    2019-04-27

    #世界之内#机器学习

  • 周记|记忆 概念 庸俗

    2019-04-27

    #随笔

  • 机器学习|模型评估与选择

    2019-04-17

    #世界之内#机器学习

  • 机器推理|SLD Resolution

    2019-04-06

    #世界之内

  • 第五代计算机

    2019-03-31

    #世界之内

  • 学习笔记|Volume Rendering

    2019-03-31

    #世界之内#图像处理

  • 周记|三月驼云

    2019-03-28

    #随笔

  • 生成对抗网络与强化学习:文本生成的方法

    2019-03-11

    #世界之内

  • 《桨声灯影里的秦淮河》俞平伯

    2019-03-09

    #世界之外

  • 周记|雨

    2019-03-09

    #随笔

  • 《春之积雪》简媜

    2019-03-01

    #世界之外

  • 周记|逃离

    2019-02-15

    #随笔

  • 存在主义是一种人道主义

    2019-02-11

    #世界之外

  • 学习笔记|比较文学

    2019-02-09

    #世界之外

  • 尼采的美学

    2019-02-01

    #世界之外

  • 哲学涉猎

    2019-02-01

    #世界之外

  • 读书笔记|光的诗人——《如何看懂印象派》

    2019-01-28

    #随笔#世界之外

  • 叔本华的生命意志哲学

    2019-01-25

    #世界之外

  • 再也不要把他们弄丢了

    2019-01-21

    #随笔

  • 2018年终总结

    2018-12-31

    #随笔#年终总结

  • 人类的心理行为模式

    2018-12-25

    #世界之外

  • 周记|神经症人格

    2018-12-22

    #随笔

  • 【周记】旋转

    2018-11-30

    #随笔

  • 七牛云Bucket失效

    2018-11-21

    #世界之内

  • 周记|从前的日色慢

    2018-11-21

    #随笔

  • 【数理逻辑】Incompleteness Theorem

    2018-11-10

    #世界之外

  • 专业随想

    2018-11-05

    #随笔

  • 生活

    2018-11-04

    #世界之外

  • 计算机组成与体系结构

    2018-11-04

    #世界之内

  • 【强化学习】Policy Gradient

    2018-11-03

    #世界之内

  • 怀疑是否有价值——怀疑论

    2018-10-30

    #世界之外

  • 周记|Every hero and coward

    2018-10-20

    #随笔

  • Web in Java

    2018-10-11

    #世界之内

  • 周记|十月女泽

    2018-10-02

    #随笔

  • 托福备考

    2018-09-28

    #世界之内

  • 周记|裸体之舞

    2018-09-24

    #随笔

  • 周记|中秋幸福

    2018-09-18

    #随笔

  • History of artificial intelligence

    2018-09-09

    #世界之外

  • 周记|我那无趣的灵魂

    2018-09-09

    #随笔

  • Softmax Regression

    2018-09-08

    #世界之内

  • 周记|Rational

    2018-09-02

    #随笔

  • 贰 《SICP》笔记:模块化、对象和状态

    2018-08-05

    #世界之内

  • 周记|困倦

    2018-08-04

    #随笔

  • 壹 《SICP》笔记:构造数据抽象

    2018-07-31

    #世界之内

  • 周记|原爆点

    2018-07-31

    #随笔

  • 零 《SICP》笔记:构造过程抽象

    2018-07-23

    #世界之内

  • Norms or maybe more

    2018-07-09

    #世界之内

  • 事已至此

    2018-06-24

    #随笔

  • 【增强学习】AirSim搭建

    2018-06-02

    #世界之内

  • 【机器学习】BP算法

    2018-05-26

    #世界之内

  • 【康德】宏大的哲学语境

    2018-05-26

    #世界之外

  • 【康德】康德的研究领域是什么

    2018-05-11

    #世界之外

  • 【高等数学】什么是梯度(期中考试复习思考)

    2018-04-29

    #世界之内

  • 《自控力》读书笔记

    2018-04-21

    #随笔

  • 【线性代数】The Essence of Linear Algebra

    2018-04-21

    #世界之内

  • 【数据结构与算法】临时抱佛脚

    2018-03-10

    #世界之内

  • 科技革命与人类社会——《论工业社会及其未来》读后感

    2018-03-08

    #随笔

  • 《论工业社会及其未来》原文摘录

    2018-02-23

    #世界之外

  • 《如何高效学习》读后总结

    2018-02-19

    #随笔

  • 《精进》chapter-2读后总结

    2018-02-13

    #随笔

  • A Review of Brian - Inspired Computer Vision

    2018-02-11

    #世界之内

  • 最近有个女生,说对我很失望

    2017-12-07

    #随笔

  • 病入膏肓

    2017-01-29

    #随笔

  • 白文鸟

    2016-10-29

    #随笔

  • 《不能承受的生命之轻》读后感

    2016-07-13

    #随笔

  • 都五月份了

    2016-04-29

    #随笔

  • 《四月裂帛》简媜

    2014-09-29

    #世界之外

  • Wuuuudle
  • Nemo
  • Elmo (yyh)
  • highestpeak
  • Kazoo Blog
努力做一名谦逊、独立、乐于思考的学生