YA

In me the tiger sniffes the rose.

  • 主页
  • 世界之内
  • 世界之外
  • 叶隙随笔
所有文章 友链 关于我

YA

In me the tiger sniffes the rose.

  • 主页
  • 世界之内
  • 世界之外
  • 叶隙随笔

Notes of 3D Gaussian Splatting

阅读数:22679次 2024-03-19
字数统计: 1.1k字   |   阅读时长≈ 7分

Notes of 3D Gaussian Splatting.

The commonly used representations of 3D content can be categorized into two categories:

  • Explicit representation, for example:
    • Mesh
    • Point Cloud
  • Implicit representation, for example:
    • Surface Function
    • NeRF

For explicit representation, Point Cloud is the most popular 3D representation in the research area. While NeRF is the most popular one in implicit representation.

Point Cloud is a set of points, each point consists of position (X, Y, Z) and texture (R, G, B). The point cloud is a natural representation, as our world consists of particles, like electrons, neutrons, etc. The disconnected and unstructured nature makes them scalable for rich processes and parallelizable for rendering.

The problem of the point cloud, or point-based representation, is that point sample rendering suffers from holes, causes aliasing, and is strictly discontinuous. To address this problem, some works propose to extend the point-based representation to other shapes like circular or elliptic discs, ellipsoids, or surfels. This kind of extension is called “splatting” and the point primitive is called “splat”, which is very vivid.

Among those splatting works, there is a work [1] that proposed elliptical Gaussian as a representation and developed a series of techniques to render the splats. This work is the backbone of a recently very hot technique, named “3D Gaussian Splatting (3DGS)” [2]. We can see that 3D Gaussian is a very “ancient” concept and the researchers have already explored it for a decade.

First, let’s introduce 3D Gaussian itself.

A 3D Gaussian is parametrized by:

  • Mean μ interpretable as location (x, y, z);
  • Covariance Σ;
  • Opacity α ;
  • Color parameters, which can be (R, G, B) or spherical harmonics (SH) coefficients.

Two parameters may confuse the readers: Covariance Σ and SH.

  • The Covariance Σ defines how the 3DG is stretched or scaled. It can be simply regarded as a parameter that enables a 3D point to be described as an ellipsoid in the 3D space.
  • SH are special functions defined on the surface of a sphere. One can regard it as basis functions that define a color representation. The rendered color is defined by the weights of the basis functions. For every 3D Gaussian, we want to learn the correct coefficients so that when we look at this 3D point from a certain direction it will convey a color the closest to the ground truth one.
  • It is a way to represent view-dependent color. We can safely use RGB, which won’t affect the visual quality a lot actually (according to simple experiments).

The main contribution of 3DGS is the optimization part: how to train and optimize the 3DG, and how to render them in real-time.

Specifically, the contributions of 3DGS are the following (as listed in the paper):

  1. Use 3D Gaussians to represent the 3D scene.
  2. Several tricks to create and optimize the 3D Gaussians for accurate representation
    1. Optimization using gradient descent
    2. Adaptive density control to increase or decrease the number of 3DG.
  3. Use GPU for real-time rendering.

Next, I will introduce 3DGS in detail following the training pipeline.

Initialization. The initialization of the 3DG set is based on a point cloud produced by Structure-from-Motion (SfM). In detail, the covariances of 3DG are initialized to be isotropic as spheres. The radiuses are set based on mean distances to neighboring points such that the 3D world is nicely covered and has no “holes”.

The logic behind this operation is quite simple: for 3D construction, you always have to know the camera matrices which are usually obtained by SfM techniques. Therefore, the side product of SfM, i.e., a sparse point cloud, is naturally a good initialization. Starting from SfM is not a must, as the ablation study part in this paper suggests, a random initialization can be used with the risk of a potential loss of the rendering quality.

Training/Optimization. After initialization, the second step is to optimize the 3DG to approximate the real 3D scene. Stochastic Gradient Descent (SGD) is used for optimization. The loss function is also very simple and intuitive: L1 and D-SSIM (structural dissimilarity index measure) between the ground truth views and the rendered views from 3DG. The training step can be sped up by GPU.

Adaptive Density Control. This can be regarded as an additional optimization step, to adjust the number of 3DG, thus enriching the details of representation, or reducing unnecessary costs caused by too many 3DG.

The authors define two cases where increasing the number of 3DG is needed: (i) Under-reconstruction and (ii) Over-reconstruction. In both cases, the 3DG tends to have large view-space positional gradients, which is thus regarded as a criterion for the detection of both cases.

For the case of under-reconstruction, a copy of the same size is created and moved in the direction of the positional gradient. For the case of over-reconstruction, where a small-scale geometry is represented by a large splat, we split the 3DG in two, divide their scale by a preset factor, and initialize their position by using the original 3D Gaussian as a PDF for sampling. The process is shown below.

The authors use opacity α to identify the necessity of removing the 3DG. That is, removing 3DG that have converged to very low values of α.

Fast rendering with GPU. To avoid the costly computation of deriving Gaussians for every individual pixel, the 3D GS technique shifts the focus of precision from the pixel level to a patch-level detail. Specifically, the 3D GS method starts by dividing the image into multiple non-overlapping patches, referred to as “tiles” in the original paper. According to the authors’ suggestion, each tile consists of 16×16 pixels. The 3D GS approach then determines which tiles intersect with the projected Gaussians. Since a projected Gaussian may cover multiple tiles, a logical approach involves duplicating the Gaussian and assigning each copy a unique identifier (referred to as a tile ID) corresponding to the relevant tile. After replication, the 3D GS technique combines the respective tile ID with the depth value obtained from the view transformation for each Gaussian. This process yields an unsorted list of bytes, where the upper bits represent the tile ID and the lower bits indicate the depth. By employing this strategy, the sorted list can be directly utilized for rendering purposes, such as alpha compositing. The figure below shows this process, which is captured from [3].

[1] Zwicker, Matthias, et al. “Surface splatting.” Proceedings of the 28th annual conference on Computer graphics and interactive techniques. 2001.

[2] Kerbl, Bernhard, et al. “3D Gaussian Splatting for Real-Time Radiance Field Rendering.” ACM Transactions on Graphics42.4 (2023).

[3] Chen, Guikun, and Wenguan Wang. “A Survey on 3D Gaussian Splatting.” arXiv preprint arXiv:2401.03890 (2024).

赏

谢谢你请我吃糖果

支付宝
微信
  • 本文作者: YA
  • 本文链接: http://www.yuuuuang.com/2024/03/19/Notes-of-3D-Gaussian-Splatting/
  • 版权声明: 本博客所有文章除特别声明外,均采用 MIT 许可协议。转载请注明出处!
  • 世界之内

扫一扫,分享到微信

【叶隙集】38 参加学术会议
【叶隙集】37 音乐会和朋友
目录,不存在的…
© 2018-2025 YA
GitHub:hexo-theme-yilia-plus by Litten
本站总访问量26276次 | 本站访客数21356人
  • 所有文章
  • 友链
  • 关于我

tag:

  • 随笔
  • 年终总结
  • 世界之内
  • 世界之外
  • 叶隙集
  • 机器学习
  • 叶隙随笔
  • 图像处理
  • 数据挖掘

    缺失模块。
    1、请确保node版本大于6.2
    2、在博客根目录(注意不是yilia-plus根目录)执行以下命令:
    npm i hexo-generator-json-content --save

    3、在根目录_config.yml里添加配置:

      jsonContent:
        meta: false
        pages: false
        posts:
          title: true
          date: true
          path: true
          text: false
          raw: false
          content: false
          slug: false
          updated: false
          comments: false
          link: false
          permalink: false
          excerpt: false
          categories: false
          tags: true
    

  • 【叶隙集】42 实习

    2025-05-31

    #随笔#叶隙集

  • 2024年终总结

    2025-04-08

    #随笔#年终总结

  • 【叶隙集】41 盘旋的白文鸟

    2025-01-12

    #随笔#叶隙集

  • 大语言模型正在伤害人机交互领域的研究

    2025-01-05

    #随笔#世界之内

  • 【叶隙集】40 台湾旅行

    2024-12-22

    #随笔#叶隙集

  • 【叶隙集】39 搬家了

    2024-09-05

    #随笔#叶隙集

  • 2023年终总结

    2024-06-27

    #随笔#年终总结

  • 【叶隙集】38 参加学术会议

    2024-05-22

    #随笔#叶隙集

  • Notes of 3D Gaussian Splatting

    2024-03-19

    #世界之内

  • 【叶隙集】37 音乐会和朋友

    2023-12-04

    #随笔#叶隙集

  • 【叶隙集】36 QE和音乐会

    2023-11-02

    #随笔#叶隙集

  • 【叶隙集】35 新室友和更积极的生活

    2023-09-11

    #随笔#叶隙随笔

  • 读书笔记|《规训与惩罚》

    2023-08-27

    #随笔#世界之外

  • 【叶隙集】34 无法参加学术会议

    2023-06-28

    #随笔#叶隙集

  • 【叶隙集】33 回国后与朋友和家人们的聚会

    2023-06-11

    #随笔#叶隙集

  • 视频压缩技术概述

    2023-04-28

    #世界之内

  • 2022年终总结

    2023-03-31

    #随笔#年终总结

  • 【叶隙集】32 平和的心态

    2022-12-27

    #随笔#叶隙集

  • 【叶隙集】31 双相情绪障碍症

    2022-12-17

    #随笔#叶隙集

  • 【学习笔记】CS5229 Advanced Computer Network

    2022-12-17

    #世界之内

  • 【叶隙集】30 下半学期太忙了!

    2022-11-25

    #随笔#叶隙集

  • 【叶隙集】29 当助教的半个学期

    2022-10-07

    #随笔#叶隙集

  • 【叶隙集】28 忙碌的第一个月

    2022-08-31

    #随笔#叶隙集

  • 【叶隙集】27 老师的职责

    2022-07-31

    #随笔#叶隙集

  • 【叶隙集】26 新加坡太难找工作了

    2022-07-23

    #随笔#叶隙集

  • 【叶隙集】25 生产工具、学习生活和阅读笔记

    2022-07-15

    #随笔#叶隙集

  • 【叶隙集】24 学习、科研、旅行和爱与关怀

    2022-06-24

    #随笔

  • 【叶隙集】23 学习与研究

    2022-04-26

    #随笔#叶隙集

  • 【学习笔记】人工智能规划与决策

    2022-04-26

    #世界之内

  • 博士申请的总结

    2022-03-31

    #随笔

  • 【叶隙集】22 新的体验和宗教

    2022-03-07

    #随笔#叶隙集

  • 2021年终总结

    2022-01-08

    #随笔#年终总结

  • 【叶隙集】21 新朋友和学术报告

    2021-10-31

    #随笔#叶隙集

  • 【叶隙集】20 音乐会与教训

    2021-10-19

    #随笔#叶隙集

  • 【叶隙集】19 六周年纪念日

    2021-10-03

    #随笔#叶隙集

  • 【叶隙集】18 疫情与疫苗

    2021-09-24

    #随笔#叶隙集

  • 摘录|联合国2021年气候问题总结报告的摘要

    2021-09-19

    #世界之外

  • 【叶隙集】17 音乐会和读书

    2021-09-08

    #随笔#叶隙集

  • 【叶隙集】16 喜欢上了游泳

    2021-09-01

    #随笔#叶隙集

  • 【叶隙集】15 课前的夜曲

    2021-08-24

    #随笔#叶隙集

  • 【叶隙集】14 平稳的学习生活

    2021-08-16

    #随笔#叶隙集

  • 【叶隙集】13 生活与朋友

    2021-07-15

    #随笔#叶隙集

  • 【叶隙集】12 毕业

    2021-06-30

    #随笔#叶隙集

  • 【叶隙集】11 毕业前的生活

    2021-06-23

    #随笔#叶隙集

  • 读书笔记|《国境以南,太阳以西》读后感

    2021-06-17

    #随笔

  • 【叶隙集】10 青甘环线旅行

    2021-06-13

    #随笔#叶隙集

  • 半监督学习|论文粗读

    2021-06-07

    #机器学习

  • 【叶隙集】9 纯粹地生活

    2021-06-06

    #随笔#叶隙集

  • 【叶隙集】8 生活的界限

    2021-05-30

    #随笔#叶隙集

  • 【叶隙集】7 隔离结束

    2021-05-21

    #随笔#叶隙集

  • 【叶隙集】6 隔离生活

    2021-05-14

    #随笔#叶隙集

  • 【叶隙集】5 新的阶段

    2021-05-08

    #随笔#叶隙集

  • 【叶隙集】4 团队管理

    2021-04-30

    #随笔#叶隙集

  • 【叶隙集】3 过低的自我评价

    2021-04-23

    #随笔#叶隙集

  • 【叶隙集】2 方向与交往

    2021-04-16

    #随笔#叶隙集

  • 【叶隙集】1 原爆点-续

    2021-04-08

    #随笔#叶隙集

  • 随笔|目的与纯粹

    2021-03-28

    #随笔

  • 随笔|白文鸟

    2021-01-20

    #随笔

  • 写在一百以后——2020年终总结

    2021-01-01

    #随笔#年终总结

  • 随笔|选择

    2020-12-25

    #随笔

  • 读书笔记|《人生的意义》总结、摘录

    2020-11-25

    #世界之外

  • 书评|Normal People, Normal Love

    2020-10-07

    #随笔

  • Decision Making|人工智能、机器学习与强化学习的概述与比较

    2020-10-03

    #世界之内

  • 随笔|疫情后的总结

    2020-09-10

    #随笔

  • 学习笔记@PRML|1 Introduction

    2020-07-31

    #世界之内

  • 随笔|面试后的回顾与思考

    2020-07-26

    #随笔

  • 数据挖掘|数据挖掘概论笔记

    2020-06-24

    #世界之内#数据挖掘

  • 续写|美女或野兽

    2020-06-18

    #随笔

  • 随笔|无常

    2020-05-31

    #随笔

  • 现象学|胡塞尔《小观念》笔记

    2020-05-13

    #世界之外

  • 随笔|我的局限性

    2020-05-13

    #随笔

  • 随笔|胡乱的记录

    2020-04-09

    #随笔

  • 随笔|疫情

    2020-02-16

    #随笔

  • 随笔|怅惘地忖度

    2020-01-29

    #随笔

  • 2019年终总结

    2019-12-08

    #随笔#年终总结

  • 机器学习|Flow-based Model学习笔记

    2019-11-06

    #世界之内#机器学习

  • 【Introduction to TensorFlow】03 卷积神经网络与复杂数据集

    2019-10-31

    #世界之内#机器学习

  • 【Introduction to TensorFlow】02 初识机器学习与计算机视觉

    2019-10-29

    #世界之内#机器学习

  • 【Introduction to TensorFlow】01 TF 快速入门

    2019-10-29

    #世界之内#机器学习

  • 【Introduction to TensorFlow】00 课程概览

    2019-10-29

    #世界之内#机器学习

  • 随笔|呓语

    2019-10-27

    #随笔

  • 周记|面纱 久别重逢

    2019-09-21

    #随笔

  • 学习笔记|拟合优化

    2019-09-15

    #世界之内

  • 周记|爱人 体验 芝诺

    2019-09-07

    #随笔

  • 摘录|造成不幸福的原因之六:嫉妒

    2019-09-06

    #世界之外

  • 随笔|虚无 纵欲

    2019-08-22

    #随笔

  • 周记|尘埃落定

    2019-06-29

    #随笔

  • 周记|本能 愉悦 基因

    2019-06-12

    #随笔

  • 周记|空荡荡

    2019-06-02

    #随笔

  • 四月裂帛——读《女儿红》

    2019-05-30

    #随笔#世界之外

  • 机器学习|主成分分析

    2019-05-10

    #世界之内#机器学习

  • 《好运设计》史铁生

    2019-05-09

    #世界之外

  • 机器学习|感知机与支持向量机

    2019-04-27

    #世界之内#机器学习

  • 周记|记忆 概念 庸俗

    2019-04-27

    #随笔

  • 机器学习|模型评估与选择

    2019-04-17

    #世界之内#机器学习

  • 机器推理|SLD Resolution

    2019-04-06

    #世界之内

  • 第五代计算机

    2019-03-31

    #世界之内

  • 学习笔记|Volume Rendering

    2019-03-31

    #世界之内#图像处理

  • 周记|三月驼云

    2019-03-28

    #随笔

  • 生成对抗网络与强化学习:文本生成的方法

    2019-03-11

    #世界之内

  • 《桨声灯影里的秦淮河》俞平伯

    2019-03-09

    #世界之外

  • 周记|雨

    2019-03-09

    #随笔

  • 《春之积雪》简媜

    2019-03-01

    #世界之外

  • 周记|逃离

    2019-02-15

    #随笔

  • 存在主义是一种人道主义

    2019-02-11

    #世界之外

  • 学习笔记|比较文学

    2019-02-09

    #世界之外

  • 尼采的美学

    2019-02-01

    #世界之外

  • 哲学涉猎

    2019-02-01

    #世界之外

  • 读书笔记|光的诗人——《如何看懂印象派》

    2019-01-28

    #随笔#世界之外

  • 叔本华的生命意志哲学

    2019-01-25

    #世界之外

  • 再也不要把他们弄丢了

    2019-01-21

    #随笔

  • 2018年终总结

    2018-12-31

    #随笔#年终总结

  • 人类的心理行为模式

    2018-12-25

    #世界之外

  • 周记|神经症人格

    2018-12-22

    #随笔

  • 【周记】旋转

    2018-11-30

    #随笔

  • 七牛云Bucket失效

    2018-11-21

    #世界之内

  • 周记|从前的日色慢

    2018-11-21

    #随笔

  • 【数理逻辑】Incompleteness Theorem

    2018-11-10

    #世界之外

  • 专业随想

    2018-11-05

    #随笔

  • 生活

    2018-11-04

    #世界之外

  • 计算机组成与体系结构

    2018-11-04

    #世界之内

  • 【强化学习】Policy Gradient

    2018-11-03

    #世界之内

  • 怀疑是否有价值——怀疑论

    2018-10-30

    #世界之外

  • 周记|Every hero and coward

    2018-10-20

    #随笔

  • Web in Java

    2018-10-11

    #世界之内

  • 周记|十月女泽

    2018-10-02

    #随笔

  • 托福备考

    2018-09-28

    #世界之内

  • 周记|裸体之舞

    2018-09-24

    #随笔

  • 周记|中秋幸福

    2018-09-18

    #随笔

  • History of artificial intelligence

    2018-09-09

    #世界之外

  • 周记|我那无趣的灵魂

    2018-09-09

    #随笔

  • Softmax Regression

    2018-09-08

    #世界之内

  • 周记|Rational

    2018-09-02

    #随笔

  • 贰 《SICP》笔记:模块化、对象和状态

    2018-08-05

    #世界之内

  • 周记|困倦

    2018-08-04

    #随笔

  • 壹 《SICP》笔记:构造数据抽象

    2018-07-31

    #世界之内

  • 周记|原爆点

    2018-07-31

    #随笔

  • 零 《SICP》笔记:构造过程抽象

    2018-07-23

    #世界之内

  • Norms or maybe more

    2018-07-09

    #世界之内

  • 事已至此

    2018-06-24

    #随笔

  • 【增强学习】AirSim搭建

    2018-06-02

    #世界之内

  • 【机器学习】BP算法

    2018-05-26

    #世界之内

  • 【康德】宏大的哲学语境

    2018-05-26

    #世界之外

  • 【康德】康德的研究领域是什么

    2018-05-11

    #世界之外

  • 【高等数学】什么是梯度(期中考试复习思考)

    2018-04-29

    #世界之内

  • 《自控力》读书笔记

    2018-04-21

    #随笔

  • 【线性代数】The Essence of Linear Algebra

    2018-04-21

    #世界之内

  • 【数据结构与算法】临时抱佛脚

    2018-03-10

    #世界之内

  • 科技革命与人类社会——《论工业社会及其未来》读后感

    2018-03-08

    #随笔

  • 《论工业社会及其未来》原文摘录

    2018-02-23

    #世界之外

  • 《如何高效学习》读后总结

    2018-02-19

    #随笔

  • 《精进》chapter-2读后总结

    2018-02-13

    #随笔

  • A Review of Brian - Inspired Computer Vision

    2018-02-11

    #世界之内

  • 最近有个女生,说对我很失望

    2017-12-07

    #随笔

  • 病入膏肓

    2017-01-29

    #随笔

  • 白文鸟

    2016-10-29

    #随笔

  • 《不能承受的生命之轻》读后感

    2016-07-13

    #随笔

  • 都五月份了

    2016-04-29

    #随笔

  • 《四月裂帛》简媜

    2014-09-29

    #世界之外

  • Fernweh
  • Wuuuudle (已失效)
  • Nemo
  • Elmo (yyh) (已失效)
  • highestpeak (已失效)
  • Kazoo Blog
努力做一名谦逊、独立、乐于思考的学生